
Continuous Incident Triage for
Large-Scale Online Service Systems

Junjie Chen
Tenured Associate Professor

Tianjin University

Online Service System (OSS)

OSSs become increasingly popular in recent years

Skype has about
300 millions of
active users as of
October 2018

Office 365 has
about 135 million
monthly active
users in 2018

There are on
average 120K new
Azure customer
subscriptions per
month in 2017

OSS incidents

Source code bugs

Misconfiguration

Network traffic

Incidents: unplanned
interruptions and
outages of the service

Huge economic loss and
serious consequences

Example 1: The estimated
cost of the one-hour
downtime for Amazon.com on
Prime Day in 2018 is up to
$100 million

Example 2: The average
cost of service downtime has
steadily increased from
$505,502 in 2010 to $740,357
in 2016 for 63 data center
organizations in the U.S.

cause

Incident Triage

Incidents Incident
mitigation ASAP

Incident triage: assigning
a new incident to
the responsible team

Accurate and
efficient incident
triage is very
challenging for
OOS

Incidents are automatically
reported by monitors
rather than people

Reason

created based on
certain simple templates; no
detailed textual descriptions

More Explanation

Accuracy of Incident Triage in the
Beginning (Manual Triage)

Ø 8 industrial large-scale OOS in Microsoft
Ø Six months of resolved incidents

Benchmark for evaluation

Even though the OCEs have
rich experience and domain
knowledge, they still make many
mistakes during incident triage in
the beginning due to the limited
information provided by the
incident reports

The average percentage is 27.3%

Continuous Incident Triage
triage

discussion &
continuous
refinement

Continuous
Incident

Triage
(practical scenario)

More than half of discussion
items are conducted to refine
incident triage

The discussion time spent on
incident triage is non-trivial

Motivate to propose an
effective approach to
continuously refining incident
triage based on incrementally
provided discussions.

Approach — DeepCT

Ø either ignore discussions or simply treat all
discussions as a whole

Ø without considering their characteristics, i.e.,
incremental creation

Existing triage approaches cannot work well in
this real-world scenario

Ø how to learn knowledge from incremental
discussions to fit the scenario of continuous
incident triage

Ø how to reduce the impact of noise introduced by
manual discussions (like conversations) on
incident triage

Challenges in continuous incident triage

Input Data

Ø the textual description
about the symptom
when an incident is
reported

title and summary of an
incident report

Ø manually written by
engineers incrementally
like conversations

Ø core information for
continuous incident
triage

incremental discussions
about an incident

Ø including the monitor
ID reporting the
incident, the incident-
occurring device, and
the incident type
(monitor reporting or
human reporting)

incident-occurring
environment info

Domain-Specific Text Encoding

There are many special terms in textual descriptions, such as API names and component
names, which are helpful but cannot be well handled by traditional text encoding methods
due to the small occurrence frequency of each special term.

build pre-trained subword
vectors based on external
corpus, and conducts fine
tuning based on historical
incident data to incorporate
the domain knowledge

conduct representation
learning to embed the
third type of input data

CNN-based encoder for the first and
second type of input data

Designed GRU-Based Model

Enhance the learning for the knowledge from earlier discussions so that correct
assignments can be achieved with fewer discussions

Ø Considering temporal
relations among discussions

Ø Reset gate to forget some
past information

Ø Update gate decide what to
collect from previous
discussion items

GRU network

Ø Noise can be masked by
assigning them quite small
weights

Ø Weights are calculated by
the softmax function

Attention-based mask
strategy

Ø Our goal is to achieve the
correct incident-triage result
as much as possible at each
time step

Ø Instead of calculating the
loss at the last time step, it
calculates the sum of the
loss at each time step

Continuous loss function

Usage of DeepCT

title,
summary,
environment

triage in the
beginning

ist
discussion

item

continuously
refine triage

Model

Evaluation

Ø 14 industrial large-scale OOS in Microsoft
Ø different application areas and developed

by different product groups
Ø six months of incident data (resolved)
Ø over 90GB incident reports
Ø about 2000 teams
Ø former four months for training, the latter

two months for predicting

Benchmark

Ø State-of-the-art deep learning based bug
triage (DL): use CNN to train the classifier
based on textual descriptions (title &
summary)

Ø DLno: ignore discussions during training
Ø DLall: treat all discussions as a whole

during training

Compared approaches

Effectiveness of DeepCT

Effectiveness of DeepCT

Statistical analysis
DeepCT significantly improves
DLno by 18.92%~30.88% and
improves DLallby 12.15%~35.52%

when the number of discussion
items is small, the title&summary
has a larger impact on prediction,
and thus DLno is more suitable
than DLall

when the number of discussion
items becomes larger, the impact
of discussions also increases, and
thus DLall is more suitable than
DLno

Contribution of Each Main Component

DeepCT

Attention-based
mask strategy

Continuous loss
function

DeepCTnomask

DeepCToriloss

Remove attention-based
mask strategy

Calculate the loss at the
last time step

Both of attention-based mask strategy and
continuous loss function contribute to DeepCT

Continuous loss function makes more
contributions when the number of discussion
items is small, while attention-based mask
strategy makes more contributions when the
number of discussion items is large.

Lessons Learned

component

monitors
Many fault-tolerant techniques are designed, and
thus an incident to an individual component may not
affect the overall system and an incident to the overall
system may be reflected by many components

(OCEs) Hard to fully understand the entire system and
are often confused by the actual causes of an incident

Product teams that are responsible for maintaining
individual components may not understand the details
about other components and the entire system

Many incidents, reported by different monitors, have
the same root cause and are duplicated or linked

Summary

